6.7. Простейшие гидравлические машины. Каков принцип действия гидравлической машины

Гидравлическая машина – это специальное оборудование, в котором подаваемая из насоса жидкость передаёт свою механическую энергию турбинам (так называемые гидродвигатели). Есть другой вариант – это машина, которая придаёт протекающей через неё жидкости механическую энергию (проще говоря – насос).

Гидравлическая машина, берущая энергию из протекающей воды, состоит из:

  • электро-генератор;
  • турбина;
  • подающий аппарат или специальные каналы.

Насос является одним из самых распространённых агрегатов. Они применяются в сельском хозяйстве, строительстве, химической, металлообрабатывающей, текстильной и пищевой промышленностях.

Гидравлическими машинами называют агрегаты, которые могут перемещать различные виды жидкостей и газов, а также, вырабатывать энергию от текущей жидкости (гидродвигатели). Именно создание и перемещение потока жидкостей и есть главное назначение гидравлических машин.

Устройство гидравлического пресса: принцип работы, схема

Современные механизмы, машины и станки, не смотря на кажущееся сложное устройство, представляют собой совокупность так называемых простых машин – рычагов, винтов, воротов и тому подобного. Принцип работы даже очень сложных приборов основывается на основополагающих законах природы, которые изучает наука физика. Рассмотрим в качестве примера устройство и принцип работы гидравлического пресса.

Гидравлический домкрат

Что такое гидравлический пресс

Гидравлический пресс – машина, создающая усилие, значительно превосходящее изначально приложенное. Название «пресс» довольно условно: такие устройства часто действительно используют для сжатия или прессования. Например, для получения растительного масла семена масличных культур сильно спрессовывают, выдавливая масло. В промышленности гидравлические прессы применяются для изготовления изделий методом штамповки.

Но принцип устройства гидравлического пресса можно использовать и в других сферах. Самый простой пример: гидравлический домкрат – механизм, позволяющий приложением относительно небольшого усилия человеческих рук поднимать грузы, масса которых заведомо превышает возможности человека. На этом же принципе – использовании гидравлической энергии, построено действие самых разных механизмов:

  • гидравлического тормоза;
  • гидравлического амортизатора;
  • гидравлического привода;
  • гидравлического насоса.

Популярность механизмов такого рода в самых разных областях техники связана с тем, что огромная энергия может передаваться с помощью довольно простого устройства, состоящего из тонких и гибких шлангов. Промышленные многотонные прессы, стрелы кранов и экскаваторов – все эти незаменимые в современном мире машины эффективно работают именно благодаря гидравлике. Помимо промышленных устройств гигантской мощности, есть множество ручных механизмов, например, домкратов, струбцин и небольших прессов.

Как работает гидравлический пресс

Чтобы понять, как работает этот механизм, нужно вспомнить, что такое сообщающиеся сосуды. Этим термином в физике называют сосуды, соединенные между собой и заполненные однородной жидкостью. Закон о сообщающихся сосудах говорит, что находящаяся в покое однородная жидкость в сообщающихся сосудах находится на одном уровне.

Если мы нарушаем состояние покоя жидкости в одном из сосудов, например, доливая жидкость, или оказывая давление на ее поверхность, чтобы привести систему в равновесное состояние, к которому стремится любая система, в остальных сообщающихся с данным, сосудах повысится уровень жидкости. Происходит это на основании другого физического закона, названного по имени ученого, сформулировавшего его – закона Паскаля. Закон Паскаля заключается в следующем: давление в жидкости или газе распространяется во все точки одинаково.

На чем же основан принцип работы любого гидравлического механизма? Почему человек может с легкостью поднять автомобиль, весящий больше тонны, чтобы поменять колесо?

Математически закон Паскаля имеет такой вид:

Давление P зависит прямо пропорционально от приложенной силы F. Это понятно – чем сильнее давить, тем больше давление. И обратно пропорционально от площади прилагаемой силы.

Любая гидравлическая машина представляет собой сообщающиеся сосуды с поршнями. Принципиальная схема и устройство гидравлического пресса показаны на фото.

Представьте, что мы надавили на поршень в большем сосуде. По закону Паскаля в жидкости сосуда начало распространятся давление, а по закону о сообщающихся сосудах, чтобы скомпенсировать это давление, в малом сосуде поршень поднялся. Причем, если в большом сосуде поршень сдвинулся на одно расстояние, то в малом сосуде это расстояние будет в несколько раз больше.

Проводя опыт, или математический расчет, несложно заметить закономерность: расстояние, на которые сдвигаются поршни в сосудах разного диаметра, зависят от соотношения меньшей площади поршня к большой. Тоже произойдет, если наоборот, силу прикладывать к меньшему поршню.

По закону Паскаля, если давление, полученное действием силы, приложенной к единице площади поршня малого цилиндра, во всех направлениях распространяется одинаково, то на большой поршень будет оказываться тоже давление, только увеличенное на столько, насколько площадь второго поршня больше площади меньшего.

В этом и заключается физика и устройство гидравлического пресса: выигрыш в силе зависит от соотношения площадей поршней. Кстати, в гидравлическом амортизаторе используется обратное соотношение: большое усилие гасится гидравликой амортизатора.

На видео представлена работа модели гидравлического пресса, которая наглядно иллюстрирует, каково действие этого механизма.

Устройство и работа гидравлического пресса подчиняется золотому правилу механики: выигрывая в силе, проигрываем в расстоянии.

От теории к практике

Блез Паскаль, теоретически продумав принцип работы гидравлического пресса, назвал его «машиной для увеличения сил». Но с момента теоретических изысканий до практического воплощения прошло более ста лет. Причиной такого запаздывания была не бесполезность изобретения – выгоды машины для увеличения силы очевидны. Конструкторами предпринимались многочисленные попытки соорудить это механизм. Проблема была в сложности создания уплотнительной прокладки, которая позволяла бы плотно прилегать поршню к стенкам сосуда и в тоже время, давать возможность ему легко скользить, сводя к минимуму издержки на трение – резины ведь тогда еще не было.

Проблема решилась только в 1795 году, когда английским изобретателем Джозефом Брамой был запатентован механизм, получивший название «пресс Брама». Позднее это устройство стали называть гидравлическим прессом. Схема действия прибора, теоретически изложенная Паскалем и воплощенная в прессе Брамы, нисколько не изменилась за прошедшие столетья.

metall.trubygid.ru

Типы гидравлических моторов

Существует три типа гидравлических моторов и все они имеют внутренние движущиеся части, которые приводятся в действие входящим потоком, их название:

— Шестеренчатый мотор

— Лопастный мотор

— Поршневой мотор

Рабочий объём и крутящий момент

Наработка мотора называется крутящим моментом. Это сила вращения вала мотора. Крутящий момент это величина измерения силы на единицу длинны, она не включает скорость.

Крутящий момент мотора определяется максимальным давлением и объёмом жидкости, которое может переместить во время каждого цикла. Скорость мотора определяется величиной потока. Больше величина потока, быстрее скорость.

Крутящий момент – это сила вращения вала мотора

Крутящий момент равен силе × расстояние

Классификация клапана

Какие бывают клапаны?

Клапаны являются средствами управления в гидравлической системе. Клапаны регулируют давление, направление потока и величину потока в гидравлической системе.

Различают три типа клапанов:

— Клапаны регулирования давления

— Клапаны управления направлением

— Клапаны регулирования величины

На рисунке ниже можно увидеть как работают клапаны.

Клапаны регулирования давления

Эти клапаны используются для ограничения давления в гидравлической системе, разгрузки насоса или настройки давления цепи. Имеется несколько типов клапанов регулирования давления, некоторые из них предохранительные, клапаны уменьшения давления и разгрузочные клапаны.

Клапан управления направлением

Этот клапан управляет выбором направления потока гидравлической системы. Типичным клапаном управления направлением является распределительный клапан и золотник.

Клапан регулирования величины

Этот клапан управляет скоростью потока масла гидравлической системы.

У правление происходит за счёт ограничения потока или отведения его. Несколько различных типов клапана регулирования величины являются клапан управления потоком и клапан деления потока.

Эти клапаны управляются различными способами: вручную, гидравлически, электрически, пневматически.

Клапаны управления давлением

Клапан управления давлением используется для следующих целей:

Ограничения давления внутри системы

Уменьшения давления

Настройка входящего давления цепи

Разгрузки насоса

Предохранительный клапан иногда называют защитным клапаном, потому что он уменьшает чрезмерное давление, когда оно достигает крайней величины.

Предохранительный клапан предупреждает детали системы от перегрузки.

Существует два типа предохранительного клапана:

Предохранительный клапан прямого действия, которые просто открываются и закрываются.

Предохранительный клапан пилотной линии, который имеет пилотную линию для управления главным предохранительным клапаном.

Предохранительный клапан прямого действия обычно используется в местах, где объём потока небольшой и работа редко повторяется. Предохранительный клапан пилотной линии необходим в местах, где большой объём масла должен быть уменьшен.

Клапаны управления направлением

Этот клапан устанавливает поток масла, как регулировщик управляет дорожным движением. Такие клапаны:

— Обратный клапан

— Золотниковый клапан

Используются различные типы конструкции управления направлением.

Обратный клапан использует тарельчатый клапан и пружину для направления потока в одном направлении. Золотниковый клапан использует подвижный цилиндрический золотник. Золотник двигается вперёд и назад, открывая и закрывая каналы для прохождения потока.

Обратный клапан

Обратный клапан устроен просто. Он называются клапаном одного потока. Это значит, что он открыт для прохождения потока в одном направлении, но закрыт для протекания масла в обратном направлении.

На рисунке ниже можно увидеть работу обратного клапана. Это обратный клапан, который устроен для сквозного потока на одной линии. Тарельчатый клапан открывается когда впускное давление больше, чем выпускное давление. Когда клапан открыт, масло свободно течёт. Тарельчатый клапан закрывается, когда впускное давление падает. Клапан прерывает поток в обратном направлении и останавливает поток под действие выпускного давления.

Золотниковый клапан

Золотниковый клапан является типичным распределительным клапаном, который используется для управления работой привода. Что обычно называют распределительным клапаном и является золотниковым клапаном. Золотниковый клапан направляет поток масла для начала, проведения и окончания работы.

Когда золотник двигается из нейтрального положения вправо или влево, происходит открытие одних каналов и закрытие других каналов. Таким способом масло подводится к и от привода. Буртик золотника плотно перекрывает входящие и выходящие потоки масла. Золотник изготовлен из прочного материала и имеет гладкую, прецизионную, крепкую поверхность. Он даже покрыт хромом для препятствования износу, ржавчине и повреждениям.

Золотниковый клапан на рисунке показывает три позиции, нейтральная, левая и правая.

Мы называем его четырёхпозиционный, потому что он имеет четыре возможных направления, которые направлены в обе полости цилиндра, в бак и в насос. Когда мы перемещаем золотник влево, поток масла направлен от насоса в левую полость цилиндра и поток из правой полости цилиндра направлен в бак. Как результат, поршень двигается вправо.

Если мы сдвигаем золотник вправо, действия прямо противоположные, соответственно поршень двигается вправо. В центральной позиции, нейтральной, масло направлено в бак. Каналы в обои полости цилиндра закрыты.

Клапаны регулирования величины

Как мы писали раньше, клапан регулирования величины работает в одном из двух направлений. Он или перекрывает поток, или меняет его направление.

Клапан управления потоком используется для управления скоростью привода посредством измерения потока. Измерение подразумевает измерение или регулирование скорости потока к или от привода. Клапан разделения потока регулирует объём потока, но так же разделяет потоки между двумя или более цепями.

Клапан деления потока управляет величиной потока, но так же разделяет потоки между двумя или более цепями.

Пропорциональный делитель потока

Назначение этого клапана — деление потока от одного источника.

Делитель потока на рисунке ниже делит потоки в соотношении 75-25 на выходе. Это возможно, потому, что вход №1 больше входа №2.

Урок «Гидравлические машины»

Работа с презентацией. Объяснение нового материала. Слайд 2- слайд 8

Выполнение эксперимента «Гидравлические машины».

А сейчас рассмотрим устройство и принцип действия гидравлической машины.

Гидравлическая (от греческого гидравликос- водяной) машина состоит из двух цилиндров разного диаметра, внутри которого могут перемещаться поршни. Пространство заполнено минеральным маслом.

Так как два цилиндра – сообщающиеся сосуды, то при отсутствии нагрузки на поршни, жидкость устанавливается в цилиндрах на одном уровне.

Если на один из поршней положить груз, то жидкость начнет перемещаться, пока снова не установится равновесие.

На слайде мы видим, что заяц, сидящий на одном поршне гидравлической машины уравновешивает двух зайцев, сидящих на другом поршне. Почему? Давайте ответим на этот вопрос. Нарисуем схему гидравлической машины. (Учащиеся рисуют схему в тетради).

F1 и F2 – силы, действующие на поршни, S1 и S2 – площади поршней.

На основе закона Паскаля, что мы можем сказать о давлении р1 и р2?

Эти давления равны.

Чему равно давление под малым поршнем?

p1=;

Чему равно давление под большим поршнем?

р2=;

Следовательно, = , откуда, при помощи математических преобразований, получаем, что = .

Вывод: сила F2 во столько раз больше силы F1, во сколько раз площадь большего поршня больше площади малого. (Все что на слайде учащиеся записывают в тетрадь).

Например, если площадь большого поршня 500 см2, а малого 5 см2 и на малый поршень действует сила 100 Н, то на больший поршень будет действовать сила, в 100 раз большая, т. е. 10 000 Н.

Таким образом, с помощью гидравлической машины можно малой силой уравновесить большую силу.

Поэтому один заяц уравновешивает двух зайцев.

Отношение = показывает выигрыш в силе. Например, в приведенном примере выигрыш в силе равен 100.

Итак, мы можем ответить на вопрос: «Почему водитель легко меняет колесо?»

Ответ. Получается выигрыш в силе.

Гидравлическую машину, служащую для прессования (сдавливания), называют гидравлическим прессом.

Видеоролик: «Гидравлический пресс».

Прессуемое тело кладут на платформу, соединенную с большим поршнем. При помощи малого поршня создается большое давление на жидкость. Это давление без изменения передается в каждую точку жидкости, заполняющей цилиндры. Поэтому такое же давление действует и на больший поршень. Но так как его площадь больше, то и сила, действующая на него будет больше силы, действующей на малый поршень. Под действием этой силы больший поршень будет подниматься. При подъеме этого поршня тело упирается в неподвижную верхнюю платформу и сжимается. Манометр, при помощи которого измеряют давление жидкости, -предохранительный клапан, автоматически открывающийся, когда давление превышает допустимое значение.

Из малого цилиндра в большой жидкость перекачивается повторными движениями малого поршня.

Гидравлические прессы применяются там, где требуется большая сила. Например, для выжимания масла из семян на маслобойных заводах, для прессования фанеры, картона, сена. На металлургических заводах гидравлические прессы используют при изготовлении стальных валов машин, железнодорожных колес и многих других изделий. Современные гидравлические прессы могут развивать силу в сотни миллионов ньютон.

Миллионы автомобилей оборудованы гидравлическими тормозами. Десятки и сотни тысяч экскаваторов, бульдозеров, кранов, погрузчиков, подъемников оборудованы гидравлическим приводом.

В огромных количествах используются гидравлические домкраты и гидропрессы в самых различных целях – от напрессовки на вагонные колесные пары бандажей до подъема ферм разводных мостов для пропуска судов на реках.

Задание для группам

Решение задач

№1. Два сообщающихся сосудов с различными поперечными сечениями наполнены водой. Площадь поперечного сечения узкого сосуда в 100раз меньше чем у широкого, на узкий поршень поставили гирю массой 1кг. Какой груз нужно поставить на широкий поршень, чтобы система находилась в равновесии?

Задача №2. По рисунку определите выигрыш в силе которая дает гидравлическая машина?

Задача №3. По рисунку определите вес шарика?

Задача №4: Малый поршень гидравлического домкрата под действием силы 500Н опустился на 15 см. При этом больший поршень поднялся на 1 см. Кая сила будет действовать на больший поршень?

xn--j1ahfl.xn--p1ai

Шестеренные

Роторные гидромашины этого вида нашли применение в системах смазки, дорожной и сельскохозяйственной спецтехнике, мобильных гидравлических конструкциях. К их плюсам относят:

  • простоту конструктивного исполнения;
  • работу на частотах до 5000 об/мин.;
  • небольшой вес;
  • компактность.

Заметные минусы:

  • рабочее давление до 20 МПа;
  • низкий КПД;
  • небольшой ресурс;
  • проблемы пульсации.

Рабочими вытесняющими элементами конструкции являются две шестерни. Они различаются по виду зацепления:

  • Внешнее. Со стороны входа шестерни вращаются в разные стороны, захватывают жидкость впадинами зубьев и перемещают ее вдоль стенок корпуса к выходу из насоса. Когда зубья входят в зацепление, рабочая жидкость выталкивается из впадин к выходу из корпуса.
  • Внутреннее. Принцип работы не меняется. Жидкость переносится в область нагнетания во впадинах между зубьями шестерни вдоль поверхности вспомогательного серпообразного разделителя. Пульсация давления и уровень шума в таких агрегатах снижаются.

Гидравлический пресс в физике

Определение гидравлического пресса

Принцип действия гидравлического пресса

Принцип действия гидравлического пресса основан на законе Паскаля. Если подействовать на малый поршень с силой , то под малым поршнем возникнет давление:

Согласно закону Паскаля это давление будет передаваться без изменения по всем направлениям в любую точку жидкости, включая точки под большим поршнем. Поэтому давление под большим поршнем:

Приравняв правые части, получим:

Из последнего соотношения видно, что сила, с которой жидкость действует на большой поршень больше силы воздействия на малый поршень во столько раз, во сколько площадь большого поршня превышает площадь малого. Таким образом гидравлический пресс дает выигрыш в силе.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Технические характеристики и параметры выбора

Основными техническими характеристиками гидронасоса являются:

  1. Частота вращения, об/мин.
  2. Рабочий объем, вытесняемый за оборот вала, см3/об.
  3. Рабочее давление.

Запомните! Основные единицы для измерения давления имеют следующее соотношение: 1 атм=1,013 бар=0,101 МПа=1,03 кгс/см2.

Выбор насоса для конкретной гидросистемы производится с учетом следующих критериев:

  • Вид элемента, вытесняющего жидкость – поршень, шестерня, пластина.
  • Требуется ручной или гидронасос с электроприводом.
  • Пределы рабочего давления.
  • Со средой какой вязкости сможет работать механизм.
  • Рабочий объем.
  • Частотный интервал работы.
  • Легкость обслуживания.
  • Габариты.
  • Цена.

6.7. Простейшие гидравлические машины

Жидкости практически несжимаемы и равномерно передают давление по всему объему. Это свойство широко используется в различных отраслях техники (гидроприводы, гидроавтоматика, гидравлические тормоза, усилители и т.д.).

Принцип их работы основан на следующем: пусть имеются два соединенные между собой цилиндра разного диаметра ( рис. 23).

Рис. 23 Приложим к поршню меньшего из цилиндров какую-то внешнюю силу Р1, мы тем самым создаем на поверхности жидкости давление

.

Это давление равномерно передается во все точки пространства, заполненного жидкостью. Тогда на поршень большего цилиндра будет действовать сила

.

Таким образом, чем больше разняться между собой площади поперечного сечения цилиндров, тем большую силу мы будем получать в таких гидравлических устройствах.

6.8. Закон Архимеда

Определим силу давления жидкости на погруженное тело А объемом W

Рис. 24 Представим, что в жидкости выделен объем, точно такой же, как и тело А. Этот объем жидкости находится в равновесии под действием двух сил ( рис. 24 ) :

1) силы давления жидкости P на поверхность выделенного объема,

2) силы тяжести жидкости, равной rWg и направленной вертикально вниз.

Следовательно, сила Р равна силе тяжести выделенного объема жидкости, направленная в обратную сторону, то есть вертикально вверх, и приложена в центре объема, т.е. в той же точке, в которой приложена сила тяжести выделенного объема жидкости.

Точка D называется центром водоизмещения.

Закон Архимеда. Сила давления жидкости на погруженное в нее тело приложена в центре водоизмещения, направлена вертикально вверх и равна силе тяжести жидкости, вытесненной телом

.

Сила P называется архимедовой силой, W – объемным водоизмещением, а rW — водоизмещением.

6.9. Равновесие и остойчивость тел, полностью погруженных в жидкость

Если сила тяжести G тела А больше архимедовой силы P, то равнодействующая этих сил (P и G) направлена вниз и заставляет тело опускаться на дно. Таким образом, если P

Если сила тяжести G тела меньше архимедовой силы P, то равнодействующая этих сил (P и G) направлена вертикально вверх и заставляет тело подняться на поверхность. При выходе части тела из жидкости сила давления на оставшуюся погруженную часть тела соответственно уменьшается, благодаря чему уменьшается и величина направленной вверх равнодействующей, заставляющей тело всплывать, в результате при некотором частичном погружении тела устанавливается равновесие и тело оказывается плавающим на поверхности жидкости. Таким образом при P>G тело всплывает на поверхность жидкости.

Для того, чтобы тело не опускалось на дно и не всплывало, необходимо, чтобы P=G.

Остойчивостью плавающего тела называется его способность возвращаться в первоначальное положение равновесия после прекращения действия силы, вызвавшей крен.

Возможны три случая( рис. 25 ).

а б в

Рис. 25

1) центр тяжести С лежит ниже центра водоизмещения D,

2) центр тяжести С находится выше центра водоизмещения D,

3) центр тяжести С совпадает с центром водоизмещения D.

В первом случае равновесие остойчивое, так как при крене возникает пара сил, стремящаяся вернуть тело в первоначальное положение.

Во втором случае равновесие неустойчивое, в третьем – безразличное.

studfiles.net

Гидравлика и работа

Три элемента работы

Когда имеется какая либо работа, то для выполнения этой работы необходимы определённые условия. Необходимо знать, какая понадобится сила. Вам надо решить, как быстро необходимо произвести работу и вы должны определить направление работы. Это три условия работы: сила, скорость и направление используются в гидравлических терминах, как показано ниже.

Гидравлические машины. Основные определения и классификация.

Гидравлические машины



Классификация гидравлических машин

Гидравлические машины — устройства для преобразования механической энергии в энергию потока и наоборот — для преобразования энергии движущейся жидкости в механическую энергию. По функциональному назначению гидравлические машины подразделяют на две основные группы:

  • насосы;
  • гидравлические двигатели.

***

Насосы

Насосы являются одной из самых распространенных разновидностей машин, применяемых практически во всех отраслях машиностроения, строительства, промышленности и сельского хозяйства. Их применяют в гидромеханических конструкциях многих механизмов и агрегатов, в трубопроводах разного назначения (нефтепроводы, газопроводы, транспортные трубопроводы и т. п.), в системах водоснабжения, отопления, охлаждения, вентиляции, в котельных установках, бытовой технике и т. д.

Насосы (как и гидродвигатели) применяют в гидропередачах, где основным элементом является гидравлический привод, назначение которого состоит в передаче энергии жидкости от насоса к исполнительному рабочему органу (гидромотору, гидроцилиндру и т. п.). Несколько иное назначение у насосов, применяемых для транспортировки жидкостей и газов (иногда — помещенных в жидкую или газообразную среду твердых объектов) по трубопроводам — здесь насосы служат для сообщения энергии движения транспортируемому веществу.

Насос преобразует механическую энергию приводного двигателя (электрического, теплового двигателя, ручного привода и т. п.) в энергию потока рабочей жидкости, т. е. насос является источником питания гидравлического привода или гидросистемы.

Согласно ГОСТ 17398-72 «Насосы. Термины и определения» по принципу действия и по виду сообщаемой жидкости энергии насосы подразделяют на две основные группы:

  • насосы динамические;
  • насосы объемные.

Динамические насосы преобразуют механическую энергию приводного электродвигателя преимущественно в кинетическую энергию потока рабочей жидкости за счет увеличения ее скорости. К динамическим относят насосы, перемещающие жидкость посредством увеличивающего ее кинетическую энергию силового воздействия (лопатки и лопасти рабочего колеса, внешнее силовое поле, внешний поток, обладающий большей кинетической энергией и т. п.). Характерная особенность динамических насосов — перемещающаяся в них жидкость имеет постоянное сообщение с входным и выходным патрубками, что конструктивно отличает их от насосов второй группы — объемных.

К динамическим относятся лопастные насосы, электромагнитные (использующие магнитное поле для ускорения потока жидкости), а также насосы, использующие силы трения и инерции (струйные, вихревые, лабиринтные, шнековые, червячные и т. п.).

Особую группу широко распространенных динамических насосов составляют насосы лопастные, передающие энергию жидкости посредством вращающегося рабочего органа — лопастного колеса. Передача энергии в таких насосах осуществляется при динамическом взаимодействии лопастей колеса с обтекающей их жидкостью.

К лопастным относятся насосы центробежные, осевые и диагональные. Центробежными называют лопастные насосы с движением жидкости через рабочее колесо от центра к периферии, осевыми — лопастные насосы с движением жидкости через рабочее колесо вдоль его оси. Примером осевого лопастного насоса может послужить водометный движитель судна, винт которого является рабочим колесом.

***



Объемные насосы предназначены для преобразования механической энергии приводного электродвигателя преимущественно в потенциальную энергию потока рабочей жидкости за счет увеличения ее давления. К объемным относят насосы, принцип работы которых основан на увеличении внешнего давления на замкнутый объем жидкости со стороны ограничивающих замкнутый объем поверхностей, и периодическим вытеснением жидкости из замкнутого объема в выходной патрубок (напорную магистраль).

Увеличение давления осуществляется за счет уменьшения замкнутого объема по пути переноса жидкости от входной (питающей) магистрали к напорной магистрали. При этом замкнутый объем попеременно сообщается то с входом (питающей магистралью), то с выходом (напорной магистралью) насоса.

Примеры наиболее распространенных конструкций объемных насосов: поршневые, плунжерные, диафрагменные, роторные и шестеренные. К объемным насосам также относятся некоторые специальные устройства, служащие для подъема и перемещения жидкостей:

  • гидравлические тараны, работа которых основана на принципе использования давления, получающегося при гидравлическом ударе;
  • эрлифты — устройства для подъема жидкостей в скважинах посредством нагнетания воздуха в скважины и создания разности объемных масс в столбе воздухонасыщенной поднимаемой жидкости и жидкости, окружающей этот воздухонасыщенный столб.

Применение насосов для хозяйственных нужд человека известно с древних времен. Первые конструкции этих машин использовали мускульный (ручной или с использованием животных) привод и предназначались для водозабора из скважин, водоемов и т. п. В настоящее время разработаны сотни разнообразных конструкций насосов, способных удовлетворить самые разнообразные потребности в машиностроении, медицине, технике, строительстве и других областях человеческой деятельности.

По создаваемому напору различают низконапорные (до 20 м), средненапорные (20..60 м) и высоконапорные (свыше 60 м) насосы. Кроме того, насосы классифицируют по мощности и подаче (микронасосы, мелкие, малые, средние, крупные), по быстроходности (тихоходные, нормальные, быстроходные), по конструктивным и некоторым другим параметрам.

***

Гидравлические двигатели

Гидравлический двигатель преобразует энергию потока рабочей жидкости, получаемой от насоса, в механическую энергию выходного звена (например, штока цилиндра или вала гидравлического мотора), которые непосредственно или через механическую передачу приводят в действие рабочий орган машины. Таким образом, двигатель является потребителем энергии жидкости в гидравлическом приводе.

Гидравлические двигатели, как правило, имеют «конструктивных близнецов» среди насосов, т. е. большая часть известных конструкций гидравлических насосов может быть использована в качестве гидродвигателя. Это означает, что практически любой насос может выполнять две функции — передавать энергию жидкости от механических устройств, или отбирать ее у движущейся жидкости, передавая механическим устройствам. По этой причине гидродвигатели, как и гидронасосы, можно классифицировать на две основные группы — динамические (крыльчатки, турбины и т. п.) и объемные (по аналогу с объемными насосами). Несколько особняком стоят объемные гидравлические двигатели — гидроцилиндры, которые, впрочем, тоже можно использовать и в качестве насосов.

***

Основными рабочими параметрами, характеризующими гидравлические машины и режимы их работы, являются напор (или давление), подача (для насоса) или расход (для гидродвигателя), мощность (потребная и полезная), а также коэффициент полезного действия.

***

Объемные насосы



k-a-t.ru

Типы гидравлических насосов

Сегодня на многих машинах установлен один из трёх насосов:

— Шестерёнчатый насос

— Лопастный насос

— Поршневой насос

Все насосы работают по роторно-поршневому типу, жидкость приводится в действие вращением детали внутри насоса.

Поршневые насосы делятся на два типа:

— Аксиально поршневого типа

— Радиально поршневого типа

Насосы аксиально поршневого типа называются так, потому что поршни насоса расположены параллельно оси насоса.

Насосы радиально поршневого типа называются так, потому что поршни расположены перпендикулярно (радиально) оси насоса. Насосы обоих типов совершают возвратно поступательное движение. Поршни двигаются вперёд и назад и используют роторно поршневое движение.

Рабочий объём гидравлического насоса

Рабочий объём, значит объём масла, которое насос может прокачать или переместить в каждом цилиндре.

Гидравлические насосы разделяются на два типа:

— Фиксированного рабочего объёма

— Изменяемого рабочего объёма

Насосы фиксированного рабочего объёма прокачивают одинаковое количество масла за каждый цикл. Чтобы изменить объём такого насоса необходимо изменить скорость насоса. Нсосы с изменяемым рабочим объёмом могут менять объём масла в зависимости от цикла. Это может быть сделано без изменения скорости. Такие насосы имеют внутренний механизм, который регулирует выходное количество масла. Когда давление в системе падает, объём возрастает, когда давление в системе возрастает, объём уменьшается автоматически.

Насос фиксированного рабочего объемаНасос изменяемого рабочего объема
Мощность
Конструкция

Классификация привода

Что такое привод?

Привод является частью гидравлической системой, которая производит энергию. Привод преобразует гидравлическую энергию в механическую энергию для совершения работы. Различают линейный и роторный приводы. Гидравлический цилиндр является линейным приводом. Усилие гидравлического цилиндра направлено прямолинейно. Гидравлический мотор является роторным приводом. Выходным усилием является крутящий момент и роторное действие.

Гидравлические цилиндры

Гидравлические цилиндры подобно рычагу. Имеется два типа цилиндров.

Цилиндры однократного действия.

Гидравлическая жидкость может двигаться только в один конец цилиндра. Возврат поршня в первоначальное положение достигается действием силы тяжести.

Цилиндры двойного действия.

Гидравлическая жидкость может перемещаться в оба конца цилиндра, поэтому поршень может двигаться в обоих направлениях.

В обоих типах цилиндров, поршень двигается в цилиндре в направлении, в котором жидкость давит на поршень. Различные типы уплотнения используются в поршнях для предотвращения течи.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]