Рекомендации по предотвращению потерь зерна на уборке зерновых колосовых культур (стр. 6 )


Как избежать битого зерна

Бичи молотильных барабанов заятавляют зерна быстрее продвигаться по молотилке. Если набравшие скорость зерна неудачно ударяются о подбарабанье, то они разбиваются. Процесс дробления зерна усиливается, если в молотилке отсутствует защитный слой соломы, то есть при неполной загрузке молотилки.

Проблеме дробления зерна при обмолоте начали уделять внимание всего лишь несколько лет назад. Факт, который мало кто знает — экономические потери, связанные с битым зерном, могут легко превзойти потери в клавишном или роторном механизме, или очистке. Все, что не покидает комбайн с соломой, попадает в зерновой бункер. Это может довольно прилично сказаться на продажной цене. Где-то в 2011 г. к дискуссии присоединились конструкторы и инженеры. Дело в том, что приблизительно в это же время на рынке увеличилась доля аксиальных комбайнов. В плане дробления зерна роторные комбайны показывают себя зачастую лучше, чем классические тангенциальные молотилки.

Действительно ли ротор обмолаживает бережнее?

Процессы, связанные с обмолом, в принципе, одинаковы у всех конструкций — это удар, трение и центрифугирование. Но в зависимости от агрегатов, используемых при обмолоте и сепарации, могут иметься существенные различия.

  • Клавишные комбайны с тангенциальной молотилкой производят обмолот в большей степени ударно. При этом неважно, имеют ли эти комбайны дополнительные сепарирующие роторы для сепарации в виде ускорителей (Claas, Sampo) или центробежных сепараторов (Deutz-Fahr, Fendt, John Deere, Massey Ferguson, New Holland). У всех комбайнов длина пути обмолота между молотильным барабаном и подбарабаньем ограничена. На этом участке происходит интенсивный обмолот и сепарация.
  • У гибридных комбайнов за тангенциальной молотилкой установлены аксиальные роторы (Claas Lexion Rotor, John Deere серии С). Эффективность сепарации остаточного зерна с помощью роторов во много раз выше, чем у клавишных соломотрясов. Поэтому, даже при конструктивно одинаковых молотилках в пространстве между декой и барабаном всегда будет находиться гораздо больше соломы, что уменьшает интенсивность дробления зерна.

И если молотилка настроена на слишком щадящий режим, то роторы домолачивают все еще остающиеся зерна — это большое преимущество данной конструкции по сравнению с клавишными соломотрясами.

  • Аксиальные комбайны могут иметь один ротор, как, например, у компаний Case, Fendt, John Deere или Massey Ferguson, или два ротора — New Holland.

Роторы принимают массу и осторожно перемещают ее по спирали. В связи с этим процесс обмолота происходит в большей степени за счет трения, а не за счет ударов. Благодаря чему, само зерно обрабатывается в щадящем режиме, но при этом сильно стирается солома.

Точно так же, как и у тангенциальных молотильных аппаратов, комбайнер и здесь может изменять частоту оборотов ротора и величину зазора подбарабанья, не покидая кабины.

Уже в ходе тестов проводимых в 70-х годах было установлено, что аксиально-роторные комбайны меньше дробят зерна, чем комбайны с обмолотом тангенциального типа. Доля битого зерна у них редко превышает 1%, даже если комбайнирование ведется в жестком режиме, то есть с большой частотой оборотов ротора и малым молотильным зазором.


Комбайны с тангенциальной системой обмолота и клавишным соломотрясом ведут себя по-другому. Если нужна высокая пропускная способность, то обмолот ведут в жестком режиме. то есть при малом молотильном зазоре и большой частоте оборотов барабана. Тогда при окружной скорости барабана в 33 м/сек количество точек удара (частота ударов бичей умноженная на число планок подбарабанья) составит 135 тысяч. Риск повреждения зерна, соответственно, возрастает. У комбайнов аксиального типа этого не происходит, так как зерно не ударяется прямолинейно по планкам подбарабанья.

При правильной настройке — не более 1% битого зерна

В испытательном центре DLG в ходе многочисленных проверок комбайнов, проводимых с начала 80-х годов, доля битого зерна у комбайнов с клавишным соломотрясом превышала 11%. Это, в принципе, вполне реально, если при низкой влажности зерна комбайн настроен исключительно на максимальную пропускную способность. С экономической точки зрения такая процентная доля битого зерна экономически не выгодна.

То, что при соответствующей настройке хорошие результаты покажет и клавишный соломотряс, подтверждают и собственные результаты института. Иногда доля битого зерна была меньше 1%.

Фермеры м сельхозподрядчики, пересевшие с комбайнов с клавишными соломотрясами на гибридные, как правило, были приятно поражены нижкой долей битого зерна. Даже при схожей настройке молотилки, такой же, как у комбайнов с клавишным соломотрясом, процентная доля битого зерна у этих комбайнов при прочих равных условиях меньше. Это может быть обусловлено только более толстым слоем материала в молоттильном зазоре — солома смягчает.

А если производить обмолот в еще более мягком режиме с молотильным зазором, увеличенным на 2-3 мм и окружной скоростью барабана, уменьшенной на 3-5 м/сек, то качество работы будет почти как у аксиальных комбайнов. Даже при влажности зерна около 12% доля дробленного зерна и в этом случае будет меньше 1%.

Дискуссии о том, что аксиальные комбайны имеют, в принципе, меньший процент дробленного зерна, чем клавишные или гибридные, не всегда приемлемы. Хотя опасность ведения обмолота в очень жестком режиме у тангенциальной молотилки выше, профессиональные комбайнеры вновь и вновь доказывают, что высокое качество зерна может быть получено как тангенциальными, так и гибридными комбайнами. Перед настройкой комбайна комбайнер должен оценить условия уборки. В этом ему может помочь общеизвестный прием растирания колоса. Опытный комбайнер сразу увидит, в каком режиме нужно убирать хлеба — в мягком или жестком. Трудности возникают при легко отделяющихся больших зернах в середине колоса и зернах, прочно сидящих у основания и (или) кончике колоса. Тогда настройка превращается в балансирование между дроблением зерна и потерями при обмолоте, а также неотделившейся половой.


Зачастую во внимание не принимается влияние влажности зерна. А ведь чем ниже его влажность, тем более твердым и хрупким становится зерно, и тем больше вероятность его дробления! У большинства хлебных злаков процентная доля битого зерна возрастает при прочих равных условиях при влажности зерна ниже 13-14%. Однако склонность зерна к дроблению может зависеть и от сорта.

Часто комбайнер настраивает молотилку на слишком жесткий режим

У многих комбайнов молотилка настроена на слишком жесткий режим. Как правило, именно неопытный комбайнер действует по принципу «кашу маслом не испортишь» и устанавливает частоту вращения барабана повыше, а молотильный зазор поменьше, считая, что уж в этом случае зерно будет вымолочено полностью, да и с производительностью все будет в порядке. Конечно, отделение зерна в подбарабанье при возрастании числа оборотов молотильного барабана улучшается. При спелых хлебах и низкой влажности зерна зазор молотильного барабана должен быть увеличен во избежание дробления зерна.

В зависимости от системы, базовые настройки комбайнов могут сильно отличаться друг от друга. При этом комбайнов с клавишным соломотрясом и стандартными молотилками или молотилками с центробежными сепаратором называют для пшеницы, как правило, окружную скорость молотильного барабана от 23 до 35 м/сек. Это соответствует (в зависимости от диаметра молотильного барабана от 45 до 75 см) частоте вращения от 1000-600 об/мин до 1500-900 об/мин. В мощных комбайнах лучше всего использовать уже сохраненные в памяти компьютера базовые настройки, т.к. перепрограммирование с помощью инструкции по эксплуатации может привести к ошибкам.

Молотилки с ускорителем настраивают на меньшие окружные скорости — от 23 до 25 м/сек, что в зависимости от диаметра барабана от 45 до 60 см соответствует частоте вращения от 980-730 об/мин до 1060-800 об/мин. Опираясь на настройки стандартной молотилки часто настраивают на слишком жесткий режим.

Для молотилок аксиального типа изготовители рекомендуют базовые установки от 30 до 37 м/сек. При диаметре ротора от 43 до 80 см это соответствует частоте вращения от 1300 — 750 об/мин до 1650-900 об/мин. Роторы развивают максимальные окружные скорости до 44 м/сек, при которых зерно в обычных комбайнах давно было бы раздроблено.

Как можно предотвратить дробление зерна?

Хорошие комбайнеры контролируют результат обмолота. К сожалению, это не всегда легко осуществлять при измельчении соломы. Но и в этом случае можно сделать короткую остановку, выключить комбайн, и через люк, ведущий к клавишам, взять пробу соломы. Или же солому на каком-то коротком отрезке укладывают в валок, а после контроля и настройки комбайна заново подбирают и измельчают. Затраченные при этом время и силы, как правило, полностью себя оправдывают. Есть еще один признак, свидетельствующий о наличии большого количества битого зерна — поврежденные мучнистые тела придают обмолоченной массе в бункере беловатый оттенок.

В распоряжении комбайнера имеется определенный набор возможных действий. Руководствуясь своим чутьем, он должен найти оптимальное значение. Какое бы действие он не совершал, нужно помнить, что датчики здесь не помогут.

  • Увеличить скорость движения при условии, что комбайн работает без потерь. На первый взгляд это может показаться необычным. Но при увеличеной пропускной способности в молотильном зазоре будет находиться больше соломы, и интенсивность дробления зерна уменьшится.

Как правило, улучшить производительность и качество одновременно можно лишь до определенных пределов. В основном, в зависимости от условий уборки, остается лишь более


мягкий обмолот — уменьшение числа оборотов барабана и увеличение зазора подбарабанья.

  • Уменьшить частоту вращения барабана, если силы связи зерна с колосом все еще велики. Во избежание потерь при обмолоте необходимо оставить молотильный зазор небольшим.
  • Увеличить молотильный зазор, если зерно лучше созрело.
  • По возможности отключить шасталку. После уборки озимого ячменя комбайнеры очень часто забывают отключить шасталку. Она уменьшает площадь подбарабанья и, тем самым, сепарацию зерна. И, вследствие большого трения, увеличивается доля битого зерна.

Но торопиться с этим не следует. Вполне возможно, что на пшенице и тритикале разумнее будет использовать шасталку. Если прочно сидящие зерна пшеницы вымолачиваются с трудом и только с неотделившейся половой, или же доля кусочков поломанных колосьев тритикале в сходе слишком велика, то с помощью подключения шасталки качество работы может быть улучшено (по меньшей мере доля битого зерна останется прежней). Для этого комбайнер должен, как правило, увеличить молотильный зазор.

  • Демонтировать планки: многие комбайны серийно оборудованы дополнительными поперечными планками на случай экстремальных условий уборки. Для нормальных условий уборки зерновых и рапса они не нужны, поэтому эти планки должны быть демонтированы. Любой комбайнер должен помнить эти основные правила перед первым выездом в поле.
  • Минимизировать сход путем подбора подходящего размера отверстий верхнего и нижнего решета, т.к. дробление зерна происходит не только в молотилке. Частенько причиной дробления является наличие слишком большой доли чистого зерна в сходе. Дело в том, что эти зерна вновь могут быть подвержены повреждениям. В устройствах домолота комбайнеры часто забывают заменить элементы для трудно обмолачиваемых культур на простые металлические направляющие, что опять же может усиливать процесс дробления зерна.

Дробление зерна: правильная оценка потерь

Какова же доля битого зерна в действительности? Чтобы определить это значение, нужно взять пробу из бункера — взвесить 100 г зерна и вручную отобрать поврежденные зерна. Затем необходимо определить их процентную долю в данной пробе. Этот метод получил общее признание и широкое применение.

И все-таки, сколько же битого зерна остается на поле после прохода комбайна. В литературе часто встречается мнение, что в бункере находится только 50% битого зерна, при этом соотношение доли битого зерна в бункере к потерям равно 1:1.

Если в соответствии с этим методом увеличить вдвое максимальные 11%, приведенные центром DLG, то получится, что тестируемый комбайн действительно выдает 22% битого зерна. Сколько же битого зерна останется на поле, нельзя определить на основе каких-либо теоретических рассуждений.

Обычному практику лучше всего проводить измерения, воспользовавшись какой-ниюудь измерительной чашей.

В экспериментах с комбайном с клавишным соломотрясом и высокой долей битого зерна, обусловленной сознательным использованием жесткого режима обмолота, соотношения долей битого зерна в бункере к потерям на поле колебалось от 11:1 до 1,4:1. И чем выше была общая доля битого зерна, тем большее его количество находилось и в зерновом бункере комбайна.

В зависимости от конструкции и настройки комбайна эти соотношения могут меняться. Даже при, казалось бы, чистой работе значение потерь зерна может быть достаточно высоким вследствие наличия высокой доли битого зерна и муки в общей массе. Поэтому приблизительный подсчет общего результата при других условиях уборки и других комбайнах не всегда приемлем.

Подводим итоги

Качество зерна обусловлено в большей степени настройкой комбайна, чем системой обмолота.

С помощью аксиальных комбайнов, действительно, можно получить незначительную долю битого зерна — меньше 1%. Это, однако, возможно и при оптимальной настройке как тангенциальных, так и, прежде всего, гибридных комбайнов. В связи с тем, что конструкция тангенциальных комбайнов рассчитана как на экстремально тяжелые, так и влажные условия уборки, комбайнер может сделать больше ошибок при их настройке для работы в сухих условиях, что ведет к увеличению битого зерна.

Для оценки потерь комбайна важно учитывать как долю битого зерна в бункере, так и потери зерна за комбайном. Результаты экспериментов показывают, что при этом нельзя рассчитывать на какие-либо простые правила. Кроме конструкции очистки и условий уборки, решающей при этом является настройка комбайна — самая большая доля битого зерна оказывается, как правило, в бункере.

Чтобы избежать высокой доли битого зерна, комбайнер может использовать различные варианты настройки. Но, чтобы ее оптимизировать, он должен хорошо знать результат применения всех вариантов. В связи с тем, что именно новичок часто сам не может правильно оценить параметры настройки, тангенциальные молотилки в комбайнах, как правило работают в очень жестком режиме. Здесь может помочь полученный по телефону совет опытного комбайнера или же использование настройки современных информационных систем по оптимизации.

Электрическая схема ВАЗ-2121

1 – боковые указатели поворота; 2 – передние фонари; 3 – фары ВАЗ-2121; 4 – электродвигатели очистителей фар; 5 – звуковые сигналы; 6 – реле включения очистителей и омывателя фар; 7 – реле включения ближнего света фар; 8 – реле включения дальнего света фар; 9 – электродвигатель омывателя ветрового стекла; 10 – датчик недостаточного уровня тормозной жидкости; 11 – штепсельная розетка переносной лампы; 12 – датчик контрольной лампы давления масла; 13 – датчик указателя давления масла; 14 – датчик указателя температуры охлаждающей жидкости; 15 – распределитель зажигания; 16 – свечи зажигания; 17 – электродвигатель стеклоочистителя; 18 – катушка зажигания; 19 – генератор; 20 – запорный клапан карбюратора; 21 – стартер ВАЗ-2121; 22 – электродвигатель омывателя фар; 23 – регулятор напряжения; 24 – реле контрольной лампы заряда аккумуляторной батареи; 25 – аккумуляторная батарея; 26 – реле стеклоочистителя; 27 – дополнительный блок предохранителей; 28 – основной блок предохранителей; 29 – выключатель контрольной лампы стояночного тормоза; 30 – выключатель контрольной лампы блокировки дифференциала; 31 – выключатель света заднего хода; 32 – выключатель контрольной лампы воздушной заслонки карбюратора; 33 – выключатель стоп-сигнала; 34 – электродвигатель отопителя; 35 – реле-прерыватель указателей поворота и аварийной сигнализации; 36 – дополнительный резистор электродвигателя отопителя; 37 – выключатель освещения приборов; 38 – переключатель света фар; 39 – переключатель указателей поворота; 40 – выключатель звуковых сигналов; 41 – переключатель стеклоочистителя; 42 – выключатель омывателя ветрового стекла; 43 – выключатель зажигания; 44 – выключатель наружного освещения; 45 – переключатель отопителя; 46 – выключатель очистителей и омывателя фар; 47 – прикуриватель; 41 – выключатель аварийной сигнализации; 49 – выключатели плафонов, расположенные в стойках дверей; 50 – указатель давления масла с контрольной лампой недостаточного давления; 51 – указатель уровня топлива с контрольной лампой резерва топлива; 52 – тахометр; 53 – контрольная лампа стояночного тормоза; 54 – контрольная лампа заряда аккумуляторной батареи; 55 – контрольная лампа воздушной заслонки карбюратора; 56 – спидометр; 57 – контрольная лампа наружного освещения; 58 – контрольная лампа указателей поворота; 59 – контрольная лампа дальнего света фар; 60 – реле-прерыватель контрольной лампы стояночного тормоза; 61 – контрольная лампа уровня тормозной жидкости; 62 – контрольная лампа блокировки дифференциала; 63 – указатель температуры охлаждающей жидкости; 64 – плафоны; 65 – датчик указателя уровня и резерва топлива; 66 – задние фонари; 67 – фонари освещения номерного знака.

Схема управления двигателем

Схема соединений системы управления двигателем ВАЗ-21214 с центральным впрыском топлива под нормы токсичности США-83 с контроллером 21214-1411010 (типа EFI-4) на автомобилях ВАЗ-21214:

1 -кон­трольная лампа «CHECK ENGINE»; 2 – комбинация приборов (фрагменты); 3 – электровентиляторы системы охлаждения двигателя*; 4 – электроподогреватель впускной трубы; 5 – датчик температуры воздуха; 6 – датчик абсолютного давления; 7 – датчик температуры охлаждающей жидкости; 8 – колодка, присоединяемая к датчику положения дроссельной заслонки; 9 – агрегат центрального впрыска топ­лива; 10 – колодка, присоединяемая к регулятору холостого хода; 11 – колодка, присоединяемая к форсунке; 12 – колодка диагностики; 13 – контроллер; 14 – датчик детонации; 15 – датчик скорости; 16 – датчик концентрации кислорода; 17 – адсорбер; 18 – аккумуляторная ба­тарея; 19 – главное реле; 20 – блок плавких предохранителей системы управления двигателем; 21 – реле включения электробензонасоса; 22 – реле включения электровентилятора*; 23 – реле включения электроподогревателя впускной трубы; 24 – предохранитель защиты элек­троподогревателя; 25 – реле включения стартера; 26 – реле зажигания; 27 – основной блок предохранителей автомобиля (фрагмент); 28 – свечи зажигания ВАЗ-21214; 29 – тахометр; 30 – электробензонасос с датчиком уровня топлива; 31 – модуль зажигания; 32 – датчик положения ко­ленчатого вала; 33 – выключатель плафона, расположенный на стойке двери водителя; 34 – блок управления автомобильной противоугонной системы**; 35 – индикатор состояния автомобильной противоугонной системы**; А – провод, идущий к штекеру «50» выключателя зажигания; Б – провод, идущий к штекеру «15» выключателя зажигания; В – провод, идущий к выводу «30» генератора; Г – провода заднего жгута проводов, присоединяемые к указателю уровня топлива; Д – провод заднего жгута проводов, присоединяемый к выключателю 33.

Полезное: Датчик с индикатором уровня жидкости омывателя авто

Схема соединений системы управления двигателем ВАЗ-21214 с распределенным впрыском топлива под нормы токсичности Евро-2 с контроллером 2123-1411020-10 (типа MP 7.0) на автомобилях ВАЗ-21214:

1 – контрольная лампа системы управления двигателем; 2 – комбинация приборов (фрагменты); 3 – электровентиляторы сис­темы охлаждения двигателя; 4 – выключатель плафона, расположенный на стойке двери водителя; 5 – индикатор состояния автомобильной противоугонной системы; 6 – блок управления автомобильной противоугонной системы; 7-датчик температуры охлаждающей жидкости; 8 – датчик расхода воздуха; 9 – дроссельный узел; 10 – колодка, присоединяемая к датчику положения дроссельной заслонки; 11 – колодка, присоединяемая к регулятору холостого хода; 12 – контроллер; 13 – датчик концентрации кислорода; 14 – датчик дето­нации; 15 – датчик положения коленчатого вала; 16 – датчик скорости; 17 – адсорбер; 18 – аккумуляторная батарея; 19 – главное реле; 20 – колодка диагностики; 21 – блок плавких предохранителей системы управления двигателем; 22 – реле включения электробензонасоса; 23 – реле включения электровентиляторов; 24 – основной блок предохранителей автомобиля (фрагмент); 25 – колодка, присоединяемая к дополнительному жгуту проводов*; 26 – модуль зажигания; 27- тахометр ВАЗ-21214; 28 – электробензонасос с датчиком уровня топлива; 29 – форсунки; 30 – свечи зажигания; А – провод заднего жгута проводов, присоединяемый к выключателю 4; Б – провода, присоеди­няемые к штекеру «1» блока предохранителей 24 (один провод идет к штекеру «15» выключателя зажигания, а другой к штекеру «85» реле зажигания); В – провода заднего жгута проводов, присоединяемые к указателю уровня топлива.

Порядок условной нумерации штекеров в колодках: а – контроллера; б – блока управления автомобильной противоугонной систе­мы; в -датчика расхода воздуха; г – датчика скорости; д – индикатора состояния автомобильной противоугонной системы; е – элект­робензонасоса и датчика концентрации кислорода; ж – дроссельного патрубка; з – модуля зажигания.

Схема автомобиля ВАЗ-21213

Электросхема ВАЗ-21213 (Карбюратор). Годы выпуска: 1993-2009 г. На схеме есть реле задних противотуманных фонарей, применяется с 2000 года, до этого они включались напрямую от выключателя с фиксацией.

1 – передние фонари; 2 – боковые указатели поворота; 3 – электродвигатель омывателя ветрового стекла; 4 – электродвигатель омывателя фар*; 5 – коммутатор; 6 – аккумуляторная батарея; 7 – стартер; 8 – генератор; 9 – фары ВАЗ-21213; 10 – моторедукторы очистителей фар*; 11 – звуковой сигнал; 12 – свечи зажигания; 13 – концевой выключатель карбюратора; 14 – электромагнитный клапан карбюратора; 15 – катушка зажигания; 16 – моторедуктор очистителя ветрового стекла; 17 – блок управления электромагнитным клапаном карбюратора; 18 – датчик-распределитель зажигания; 19 – датчик указателя температуры охлаждающей жидкости; 20 – датчик контрольной лампы давления масла; 21 – штепсельная розетка для переносной лампы**; 22 – датчик контрольной лампы уровня тормозной жидкости; 23 – реле-прерыватель очистителя ветрового стекла; 24 – реле включения заднего противотуманного света***; 25 – реле включения обогрева заднего стекла; 26 – реле включения очистителей и омывателя фар*; 27 – реле включения ближнего света фар; 28 – реле включения дальнего света фар; 29 – реле зажигания ВАЗ-21213; 30 – реле включения стартера; 31 – реле-прерыватель аварийной сигнализации и указателей поворота; 32 – электродвигатель отопителя; 33 – добавочный резистор электродвигателя отопителя; 34 – лампы подсветки рычагов управления отопителем; 35 – выключатель наружного освещения; 36 – основной блок предохранителей; 37 – дополнительный блок предохранителей; 38 – выключатель света заднего хода; 39 – выключатель стоп-сигнала; 40 – регулятор освещения приборов; 41 – выключатель зажигания; 42 – трехрычажный переключатель; 43 – выключатель аварийной сигнализации; 44 – переключатель очистителя и омывателя стекла двери задка*; 45 – переключатель электродвигателя отопителя; 46 – выключатель обогрева стекла двери задка; 47 – выключатель заднего противотуманного света; 48 – выключатели плафонов, расположенные в стойках дверей; 49 – плафоны освещения салона; 50 – прикуриватель Нива; 51 – выключатель контрольной лампы прикрытия воздушной заслонки карбюратора; 52 – контрольная лампа прикрытия воздушной заслонки карбюратора; 53 – выключатель контрольной лампы блокировки дифференциала; 54 – выключатель контрольной лампы стояночного тормоза; 55 – датчик указателя уровня и резерва топлива; 56 – комбинация приборов; 57 – электродвигатель омывателя стекла двери задка; 58 – задние фонари; 59 – колодка для подключения дополнительных стоп-сигналов; 60 – колодки для подключения боковых указателей габарита; 61 – колодки для подключения к элементу обогрева стекла двери задка; 62 – фонари освещения номерного знака; 63 – моторедуктор очистителя стекла двери задка.

Порядок условной нумерации штекеров в колодках:

а – очистителей ветрового стекла, фар и стекла двери задка, реле-прерывателя очистителя ветрового стекла; б – датчика-распределителя зажигания; в – реле-прерывателя аварийной сигнализации и указателей поворота; г – коммутатора ВАЗ-21213; д – трехрычажного переключателя; е – выключателя аварийной сигнализации; ж – реле включения заднего противотуманного света; з – задних фонарей (нумерация выводов по порядку сверху вниз); и – комбинации приборов.

В жгуте проводов панели приборов вторые концы белых проводов сведены в одну точку, которая соединена с регулятором освещения приборов. Вторые концы черных проводов также сведены в точку, соединенную с массой. Вторые концы желтых проводов с голубой полоской сведены в точку, соединенную с выводом «А» основного блока предохранителей. И вторые концы оранжевых проводов тоже сведены в точку, соединенную с выводом «Б» основного блока предохранителей.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]