Тип редуктора Передаточное число [I] Крутящий момент редуктора Эксплуатационный коэффициент (сервис-фактор) Мощность привода Коэффициент полезного действия (КПД) Взрывозащищенные исполнения Показатели надежности Сервис расчета привода
В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.
При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:
- тип редуктора;
- мощность;
- обороты на выходе;
- передаточное число редуктора;
- конструкция входного и выходного валов;
- тип монтажа;
- дополнительные функции.
Тип редуктора
Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:
Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.
В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.
ВАЖНО! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.
- Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
- Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.
Таблица 1. Классификация редукторов по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 | Коническая Цилиндрическая (одна или несколько) | Пересекающееся/скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная (одна или две) | Скрещивающееся |
1 | Параллельное | ||
Цилиндрическо-червячный или червячно-цилиндрический | 2 | Цилиндрическая (одна или две) Червячная (одна) | Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 | Цилиндрическая (одна или несколько) Планетарная (одна или несколько) | Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 | Червячная (одна) Планетарная (одна или несколько) | Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Понижающий редуктор своими руками: описание, схемы, чертеж и отзывы
Понижающий редуктор — это устройство, которое предназначено для преобразования крутящего момента. Выделяют червячные, планетарные и комбинированные модификации. Двигатель с редуктором способен работать при высоких оборотах. Стандартная модель состоит из вала, толкателей и шестерни. При необходимости устройство понижающего типа можно сделать самостоятельно.
Схема червячной модификации
Схема червячного механизма включает в себя широкий диск, рядом с которым находится шестерня. Первый толкатель располагается у основания редуктора. При этом муфта крепится в передней части корпуса. Чтобы самостоятельно сделать устройство, в первую очередь вырезается стойка под вал. Далее нужно закрепить диски. В последнюю очередь напаивается фиксатор.
Сборка планетарного устройства
Данный понижающий редуктор для электродвигателя отличатся тем, что у него применяется двухкамерная коробка. Толкатели у модификаций устанавливаются разного размера. Чтобы сделать устройство своими руками, заготавливается широкий блок. Далее важно установить толкатели. Непосредственно муфта фиксируется на зажимной пружине.
Специалисты рекомендуют заранее обточить стойку и наварить на ней опоры. Шестерня фиксируется в задней части редуктора. Нажимной диск устанавливается только с упором. Фиксаторы разрешается монтировать с роликовым механизмом. Также надо отметить, что есть множество самодельных модификаций с дополнительными упорами, которые стабилизируют вал.
Цилиндрические редукторы
В последнее время активно используется цилиндрический самодельный понижающий редуктор. Своими руками устройство можно делать с коротким и длинным валом. При этом упоры устанавливаются в задней части корпуса. Некоторые устройства собираются с одной шестерней. Перед началом установки детали подготавливается блок под диски. Вал редуктора фиксируется на стойке.
Держатель разрешается делать с упором. Шарикоподшипники фиксируются у основания вала. Нажимные диски у моделей могут быть разного размера. Если рассматривать компактные устройства, то пружину стоит устанавливать малого диаметра. Также надо отметить, что шестерни укладываются за валом. Толкатели при этом не должны соприкасаться с диском. В передней части корпуса накручивается крышка.
Чертежи конической модели
Данный понижающий редуктор можно сделать с продольными толкателями. Диски чаще всего устанавливаются на короткой стойке. Для переключения сцепления устанавливается рычаг.
Многие модификации собираются с переходным держателем. Вал при этом фиксируется за стойкой. Для регулировки натяжения используется муфта. В конце работы останется только закрепить крышку.
Двигатель с понижающим редуктором способен работать при частоте 50 гц.
Отзывы о комбинированных устройствах
Комбинированные редукторы, понижающие обороты, среди профессионалов высоко ценятся. Если верить отзывам, то модели хорошо подходят для асинхронных двигателей. Толкатели целесообразнее применять из стальных пластин.
Для установки дисков используются упоры. Муфта у модификаций фиксируется за валом. Если верить отзывам экспертов, то фиксатор можно вырезать из обычной пластины.
Также надо отметить, что крышку целесообразнее устанавливать с винтовым зажимом.
Модификации с одним фиксатором
Сделать понижающий редуктор своими руками очень просто. Толкатели в данном случае надо устанавливать под упорами. Коробку для модификации можно подбирать однокамерного типа. Шестерни разрешается использовать с зажимом.
Нажимные диски устанавливаются с роликовым механизмом. Прижимной диск фиксируется перед толкателем. Для установки пружины надо воспользоваться молотком. Муфта на сцепление крепится под диском.
Шарикоподшипники разрешается использовать разного размера.
Устройства на два фиксатора
Модификации на два фиксатора складываются с двойной камерой. Всего для сборки потребуется два диска. Непосредственно муфта подбирается с опорной пружиной.
Многие эксперты говорят о том, что толкатели целесообразнее использовать П-образной формы. Для переключения передач применяется рычаг. Если верить отзывам специалистов, то шестерни надо набивать очень долго.
При этом вал важно фиксировать у основания камеры. В конце работы останется только сделать держатель под ролики.
Модели с передним расположением толкателей
Понижающие редукторы для мотоблоков с передним расположением толкателей способны поддерживать высокие обороты асинхронного двигателя. Держатели у модификаций устанавливаются с роликовыми механизмами. Многие модели складываются с продольными упорами.
Перед началом сборки заготавливается камера под шарикоподшипники. Они фиксируются на днище блока. Ведомый диск вытачивается небольшого диаметра. Также надо отметить, что упоры важно надежно фиксировать. В задней части редуктора должна крепиться крышка.
Редукторы с задним расположением толкателей
Понижающий редуктор с задним расположением толкателей пользуется большим спросом. В первую очередь надо отметить, что модели являются компактными. При этом устройства отлично справляются с большими перегрузками. Недостатком моделей можно назвать быстрый износ дисков. Происходит это из-за трения упоров. При необходимости модификацию можно сделать своими руками.
С этой целью специалисты рекомендуют заготовить узкий блок, установить диски с роликовым механизмом. Шестерню целесообразнее укладывать после толкателей. Также надо отметить, что есть модификации с тормозными упорами. Толкатели в таком случае фиксируются на стойке. Для переключения передач придется установить рычаг.
После этого фиксируется ведущий диск. Крышку для редуктора можно подбирать с винтовым соединением. Нажимные диски, как правило, фиксируются возле передней стойки. Держатель для моделей подходит с упором или без него. Если верить отзывам специалистов, то наиболее востребованными считаются редукторы на два толкателя.
Отзывы об одноступенчатых модификациях
Большинство специалистов положительно отзываются об одноступенчатых редукторах. Однако важно понимать, что качественные модели собираются с переходными толкателями. У них используются заточенные головки, они не трутся о диски. Вал редуктора целесообразнее устанавливать за перегородкой. Шестерня чаще всего фиксируется перед стойкой.
Также надо отметить, что существуют компактные модификации с валом небольшого размера. У них имеются малые прижимные диски, устройство не способно поддерживать высокие обороты двигателя. Держатели устанавливаются цилиндрической формы.
Нажимные диски применяются с переходниками и без них. Для уменьшения силы трения используются ролики, а подшипники устанавливаются у основания вала. Отдельное внимание при сборке важно уделить блоку. Чтобы корпус выдерживал большие нагрузки, его необходимо тщательно пропаять.
В конце работы останется только наварить крышку.
Сборка двухступенчатых устройств
Двухступенчатый понижающий редуктор способен работать с асинхронными двигателями высокой мощности. Современные модели выпускаются с продольными толкателями. При необходимости двухступенчатую модификацию можно изготовить самостоятельно. С этой целью берется блок и помещаются рабочие диски.
Вал важно тщательно обточить и напаять широкую головку. Для фиксации шестерни используется небольшой шток. Фиксатор устанавливается чаще всего в переднюю часть редуктора. Упор можно выточить из обычной стальной пластины небольшой толщины. Вал модификации не должен соприкасаться с рабочими дисками.
Также надо отметить, что устройства складываются с муфтой и без нее. Если рассматривать первый вариант, то в блок устанавливается рычаг сцепления. При этом пружина подбирается небольшого диаметра. Нажимной упор лучше фиксировать на коробке устройства.
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин. Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Предварительная подготовка
Чтобы электродвигатель с редуктором собственного изготовления работал не хуже заводской модели, нужно обладать базовыми навыками в области механики и уметь работать с инструментами. Каких либо специализированных умений и глубоких познаний здесь не требуется. Естественно, перед началом работ по созданию механизма нужно предварительно изучить устройство и принцип действия редуктора, а также определить следующие моменты:
- разновидность создаваемого редуктора и его конструкционные особенности;
- преобразовывающее передаточное число;
- передаточное число на выходе;
- ожидаемая динамическая нагрузка на рабочие части устройства в процессе работы;
- габаритные размеры и вес будущего изделия;
- тип и угол монтажа;
- рабочий диапазон, максимумы и минимумы температур снаружи и внутри устройства в процессе его эксплуатации;
- особенности запуска – полный цикл или переменный;
- интенсивность работы электромотора с редуктором 220В.
В процессе изготовления редуктора понадобятся следующие составные части:
- Корпус. Заводской электропривод с понижающим редуктором, как правило, имеет литой чугунный или алюминиевый каркас с отверстиями, сделанными на промышленном оборудовании высокой точности. Для самодельного устройства подходящий корпус можно подобрать от другого оборудования, например, старого редуктора или сварить самому из стальных листов. Очень важно добиться правильного взаимного размещения валов и шестеренок. Верхнюю крышку для облегчения дальнейшего обслуживания и эксплуатации агрегата желательно сделать съемной. В нижней части корпуса тоже должно быть отверстие для стачивания отработанного масла;
- Оси и валы. Они должны стать надежной опорой для звездочек и шестеренок, поэтому в качестве материала изготовления желательно выбирать качественную сталь 10-45 миллиметров, хорошо поддающуюся механической обработке. Для одноступенчатого механизма достаточно только валов с жестко закрепленными шестеренками, поворачивающимися вместе с валами. Оси ставятся для монтажа промежуточных звездочек. Установка производится на шпонку или шлицы внатяжку;
- Набор подшипников. Они используются для облегчения нагрузки на валы во время вращения. От правильно подобранных подшипников напрямую зависит эффективность работы, надежность и срок эксплуатации всей конструкции. Если электромотор с редуктором использует шестерни с прямыми зубьями, то достаточно поставить простые однорядные или двухрядные подшипники шарикового типа. Для червячной передачи или косозубых шестеренок лучше выбрать упорно-радиальные или роликовые подшипники. Хорошим выбором для самодельного механизма станут закрытые подшипники с консистентной смазкой, не нуждающиеся в особом обслуживании. Оставшиеся после разборки, бывшие в употреблении детали лучше не использовать, а купить новые;
- Шестеренки. От них зависит, с какой частотой будут вращаться валы и насколько снизится передаточное число. Шестеренки делаются на специальных промышленных металлорежущих станках, которые в домашних условиях и в частных мастерских практически не используются. Габариты шестеренок влияют на размер и параметры большинства входящих в состав конструкции редуктора комплектующих, а также на межосевое расстояние. При их установке особое внимание следует уделить правильному выставлению зазора между зубьями. Масло для смазывания заливается так, чтобы покрыть нижнюю часть шестеренок. Остальные части устройства будут смазываться в процессе работы путем разбрызгивания. Тоже желательно приобрести новые изделия, но подойдут и бывшие в употреблении, если они в хорошем состоянии без особого износа зубьев;
- Уплотнители и сальники. Они ставятся на выходе валов возле подшипников и используются для предотвращения утечки масла из корпуса редуктора. Покупаются новые изделия;
- Защитная муфта. Она снижает вероятность разрушения конструкции редуктора при воздействии на него запредельных нагрузок и выпускается в виде срезаемого штифта, сильфона или фрикционного диска. Здесь экономить не рекомендуется. Муфта нужна новая;
- Крышки подшипников глухого или сквозного типа. Они существенно облегчат процесс установки, обслуживания и замены подшипников. Можно использовать детали с разборки или выточить самому.
Также нужно запастись необходимыми инструментами и материалами, такими как:
- отвертки разной формы и размера;
- ключи гаечные в ассортименте;
- набор сверл разного диаметра;
- надфили и напильники;
- инверторный сварочный аппарат;
- молотки, плоскогубцы и тиски;
- линейка, штангенциркуль и прочие измерительные инструменты;
- стальные листы, обрезки трубы и прочее.
Когда все вышеперечисленные комплектующие и инструменты собраны, можно приступать непосредственно к изготовлению редуктора.
Крутящий момент редуктора
Крутящий момент на выходном валу [M2] – вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент [Mn2] – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент {M2max] – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент [Mr2] – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент [Mc2] – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.
Самодельный понижающий редуктор своими руками
Как правило, в хорошей домашней мастерской есть много устройств и приспособлений, с помощью которых можно облегчить ручной труд и повысить эффективность работы. Например, к таким механизмам можно отнести понижающий редуктор.
В большинстве случаев он нужен для того, чтобы изменить в меньшую сторону скорость вращения выходного вала или повысить на нем крутящий момент. По своей конструкции редуктор может быть шестеренным, червячным либо комбинированным, а также одно- или многоступенчатым.
Ниже мы рассмотрим, как можно сделать несложный редуктор своими руками.
Что такое редуктор?
Этот механизм представляет собой передаточное звено, которое располагается между вращательными устройствами электродвигателя или двигателя внутреннего сгорания к конечному рабочему агрегату. Основными характеризующими показателями редуктора являются:
- передаваемая мощность;
- КПД;
- количество ведущих и ведомых вращательных валов.
К вращательным устройствам этого механизма неподвижно закрепляют зубчатые или червячные передачи, которые передают и регулируют движение от одного к другому. В корпусе имеются отверстия с подшипниками, на которых располагаются валы.
Реверс редуктор для мотоблока
В реверс редукторе реверсирование выполняется по следующей схеме: между противоположными коническими шестернями, которые свободно сидят на ведущем валу, находится муфта.
Она находясь в крайних положениях цепляется за шлицы на этих шестернях. Поэтому, когда муфта входит в зацепление, изменяется направление вращения шестерни. Шестерни должны быть спирального типа. Механизм привода муфты представляет собой традиционную вилку либо кулачек.
Как сделать редуктор своими руками?
Самой важной деталью понижающего редуктора считается его корпус. Он должен быть спроектирован и изготовлен правильно своими руками, так как от этого зависит взаимное положение валов и осей, соосность гнезд под опорные подшипники и зазоры между шестернями.
Корпусы промышленных редукторов изготавливают в основном методом литья из алюминиевых сплавов или чугуна, однако, в домашних условиях сделать это совершенно невозможно. Поэтому под свои нужды можно подобрать или доделать уже готовый корпус либо сварить из стального листа.
Только в этом случае следует помнить, что в процессе сварки металл может «повести», и поэтому для сохранения соосности валов необходимо оставлять припуск.
Преимущества и недостатки агрегата
Безусловно, рабочие показатели фирменного минитрактора значительно выше, чем у самодельных аналогов. Но никто и не пытался доказать, что самодельные агрегаты сопоставимы в своих технических данных с покупными вариантами.
Изначально подразумевалось, что минитракторы, сделанные своими руками, будут использоваться на довольно небольших площадях, где их рабочей мощности будет достаточно. Именно поэтому, использование самодельных агрегатов на бытовом уровне становится все более целесообразным.
К прочим преимуществам таких минитракторов относят:
- Довольно неплохие показатели качества вспахивания земельных угодий. При этом, они во многом сопоставимы с глубиной проникновения, которые показывают минитракторы, приобретенные в магазинах.
- Достаточно простая эксплуатация подобных устройств, не требующая особых знаний и умений.
- Изготовление самодельного агрегата будет куда более дешевым вариантом, чем покупка нового минитрактора.
- Более упрощенный ремонт, ведь вы сами изготавливаете минитрактор из доступных деталей, которые потом можно без труда достать.
- Возможность внесения изменений в конфигурацию устройства, добавляя что-то новое. В покупных минитракторах это недопустимо, ведь можно полностью вывести агрегат из строя.
Однако, не стоит думать, что изготовление минитрактора в домашних условиях является безоговорочно выгодным предприятием. У данного способа есть и свои недостатки:
- Достаточно кропотливый процесс сборки, ведь это требует наличия определенных технических знаний, а также умения работать со сварочным аппаратом и т.д. Иными словами, изготовление минитрактора своими руками подойдет далеко не каждому.
- Поиск нужных запчастей и деталей также является дополнительной сложностью в данном вопросе.
Как мы видим, преимуществ все-таки больше, что говорит о верном принятии решения – изготавливать самодельные минитрактора своими руками. Наверно главным плюсом является хорошая экономия средств, ведь вопрос цены становится определяющим в последнее время.
Эксплуатационный коэффициент (сервис-фактор)
Сервис-фактор (Sf) рассчитывается экспериментальным методом. В расчет принимаются тип нагрузки, суточная продолжительность работы, количество пусков/остановок за час эксплуатации мотор-редуктора. Определить эксплуатационный коэффициент можно, используя данные таблицы 3.
Таблица 3. Параметры для расчета эксплуатационного коэффициента
Тип нагрузки | К-во пусков/остановок, час | Средняя продолжительность эксплуатации, сутки | |||
<2 | 2-8 | 9-16h | 17-24 | ||
Плавный запуск, статичный режим эксплуатации, ускорение массы средней величины | <10 | 0,75 | 1 | 1,25 | 1,5 |
10-50 | 1 | 1,25 | 1,5 | 1,75 | |
80-100 | 1,25 | 1,5 | 1,75 | 2 | |
100-200 | 1,5 | 1,75 | 2 | 2,2 | |
Умеренная нагрузка при запуске, переменный режим, ускорение массы средней величины | <10 | 1 | 1,25 | 1,5 | 1,75 |
10-50 | 1,25 | 1,5 | 1,75 | 2 | |
80-100 | 1,5 | 1,75 | 2 | 2,2 | |
100-200 | 1,75 | 2 | 2,2 | 2,5 | |
Эксплуатация при тяжелых нагрузках, переменный режим, ускорение массы большой величины | <10 | 1,25 | 1,5 | 1,75 | 2 |
10-50 | 1,5 | 1,75 | 2 | 2,2 | |
80-100 | 1,75 | 2 | 2,2 | 2,5 | |
100-200 | 2 | 2,2 | 2,5 | 3 |
Мощность привода
Правильно рассчитанная мощность привода помогает преодолевать механическое сопротивление трения, возникающее при прямолинейных и вращательных движениях.
Элементарная формула расчета мощности [Р] – вычисление соотношения силы к скорости.
При вращательных движениях мощность вычисляется как соотношение крутящего момента к числу оборотов в минуту:
P = (MxN)/9550
где M – крутящий момент; N – количество оборотов/мин.
Выходная мощность [P2] вычисляется по формуле:
P2 = P x Sf
где P – мощность; Sf – сервис-фактор (эксплуатационный коэффициент).
ВАЖНО!
Значение входной мощности всегда должно быть выше значения выходной мощности, что оправдано потерями при зацеплении:
P1 > P2
Нельзя делать расчеты, используя приблизительное значение входной мощности, так как КПД могут существенно отличаться.
Коэффициент полезного действия (КПД)
Расчет КПД рассмотрим на примере червячного редуктора. Он будет равен отношению механической выходной мощности и входной мощности:
ñ [%] = (P2/P1) x 100
где P2 – выходная мощность; P1 – входная мощность.
ВАЖНО!
В червячных редукторах P2 < P1 всегда, так как в результате трения между червячным колесом и червяком, в уплотнениях и подшипниках часть передаваемой мощности расходуется.
Чем выше передаточное отношение, тем ниже КПД.
На КПД влияет продолжительность эксплуатации и качество смазочных материалов, используемых для профилактического обслуживания мотор-редуктора.
Таблица 4. КПД червячного одноступенчатого редуктора
Передаточное число | КПД при aw, мм | ||||||||
40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | |
8,0 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 | 0,95 | 0,96 |
10,0 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 | 0,95 |
12,5 | 0,86 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 | 0,94 |
16,0 | 0,82 | 0,84 | 0,86 | 0,88 | 0,89 | 0,90 | 0,91 | 0,92 | 0,93 |
20,0 | 0,78 | 0,81 | 0,84 | 0,86 | 0,87 | 0,88 | 0,89 | 0,90 | 0,91 |
25,0 | 0,74 | 0,77 | 0,80 | 0,83 | 0,84 | 0,85 | 0,86 | 0,87 | 0,89 |
31,5 | 0,70 | 0,73 | 0,76 | 0,78 | 0,81 | 0,82 | 0,83 | 0,84 | 0,86 |
40,0 | 0,65 | 0,69 | 0,73 | 0,75 | 0,77 | 0,78 | 0,80 | 0,81 | 0,83 |
50,0 | 0,60 | 0,65 | 0,69 | 0,72 | 0,74 | 0,75 | 0,76 | 0,78 | 0,80 |
Таблица 5. КПД волнового редуктора
Передаточное число | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 |
КПД | 0,83 | 0,82 | 0,80 | 0,78 | 0,75 | 0,72 | 0,70 | 0,65 |
Таблица 6. КПД зубчатых редукторов
Тип редуктора | КПД |
Цилиндрический и конический одноступенчатый | 0,98 |
Цилиндрический и коническо-цилиндрический двухступенчатый | 0,97 |
Цилиндрический и коническо-цилиндрический трехступенчатый | 0,96 |
Цилиндрический и коническо-цилиндрический четырехступенчатый | 0,95 |
Планетарный одноступенчатый | 0,97 |
Планетарный двухступенчатый | 0,95 |
Взрывозащищенные исполнения мотор-редукторов
Мотор-редукторы данной группы классифицируются по типу взрывозащитного исполнения:
- «Е» – агрегаты с повышенной степенью защиты. Могут эксплуатироваться в любом режиме работы, включая внештатные ситуации. Усиленная защита предотвращает вероятность воспламенений промышленных смесей и газов.
- «D» – взрывонепроницаемая оболочка. Корпус агрегатов защищен от деформаций в случае взрыва самого мотор-редуктора. Это достигается за счет его конструктивных особенностей и повышенной герметичности. Оборудование с классом взрывозащиты «D» может применяться в режимах предельно высоких температур и с любыми группами взрывоопасных смесей.
- «I» – искробезопасная цепь. Данный тип взрывозащиты обеспечивает поддержку взрывобезопасного тока в электрической сети с учетом конкретных условий промышленного применения.
Изготовление корпуса изделия
Наиболее важной деталью устройства специалисты считают его корпус. Станину нужно правильно спроектировать и собрать, потому что от нее зависит положение осей и рабочих валов, соосность отверстий для подшипников, расстояние между шестернями и ременными механизмами.
В заводских условиях корпуса для понижающих редукторов делают способом литья из чугуна или сплавов алюминия. Самостоятельно сделать такую заготовку просто невозможно. По этой причине необходимо найти или переделать заводской корпус. А также его можно сварить из железного листа.
Некоторые домашние умельцы смогли найти выход простой из положения. Для того чтобы не заниматься расточными работами, необходимо полностью сваривать станину. Опорные подшипники будут устанавливаться в небольшие отрезки металлических труб. Их нужно выставить в рабочем положении, а потом хорошо закрепить крепежными материалами или сваркой.
Специалисты советуют сделать на корпусе специальную съемную крышку для удобного обслуживания узлов конструкции. Снизу стоит изготовить сливное отверстие, необходимое для стока старого масла.